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Coral exposed to short periods of temperature stress (≥1.0◦C above mean monthly maximum) and/or increased frequencies of 
high temperatures may bolster resilience to global warming associated with climate change. We compared Montastraea cavernosa 
(Linnaeus, 1767; Cnidaria, Scleractinia, Faviidae) from the Florida Keys National Marine Sanctuary (FKNMS) and the Flower 
Garden Banks National Marine Sanctuary (FGBNMS). Thermal stress has been reported frequently within the FKNMS; however, 
corals in the FGBNMS experience nominal exposures to similar stressors. Corals were exposed to three temperatures (27◦C, 31◦C, 
and 35◦C) for 72 h. Colonies from the FKNMS lost significantly fewer viable and necrotic zooxanthellae under conditions of acute 
stress (35◦C) than the FGBNMS colonies. This indicates that the FKNMS corals are less temperature-sensitive than those in the 
FGBNMS. The observed differences point to greater prior temperature exposure and adaptation in the former versus the latter site 
when correlated to previous years of thermal exposure. 

1. Introduction 

The earliest reefs are believed to have existed more than 3.4 
billion years ago, dating back to the Early Archean era [1]. 
Reefs at that time were likely dominated by cyanophyceans 
and other bacteria [2]. More “modern” reefs consisting of 
coral and algae evolved during the Oligocene and Miocene, 
∼5 million years ago [3]. Present day reefs, such as the Indo-
Pacific Great Barrier Reef (GBR) have evolved over the last 
500–600 K years [4]. During each of these major eras of reef 
development, major climate changes throughout the geolog
ical time are believed to have influenced the evolution of 
species and the subsequently, adaptation of surviving species 
to these changes [1]. Such changes are believed to include 
the evolution of symbiosis. To better understand how future 
reefs will adapt to present-day climate changes, numerous 
studies have been done (reviewed in [5–10]). The causes of 
present-day crises on coral reefs is believed to be most likely a 
synergism between natural climate-related stress exacerbated 
by human-imposed stress. In 1998, heat stress is believed to 

have caused 48% of western Indian Ocean reefs and 16% of 
all reef areas globally to bleach [11, 12]. In 2002, extensive 
bleaching occurred on 60–95% of the world’s barrier reefs, 
causing the loss of 50–90% of the corals there [12]. On the 
Great Barrier Reef, Australia, 50–60% of the reefs bleached, 
affecting 75,000 to 210,000 km2 [13, 14]. 

Disease has also been a major cause of loss of coral cover 
in the Caribbean Sea. Changes in climate in combination 
with an increase in the incidence of coral disease [15–20] 
have resulted in a major decrease in the live coral cover. Be
tween 1984 and 1991, the live coral cover decreased by as 
much as 49% at certain sites in the Florida Keys [21]. In 
fact, damage inflicted on Caribbean corals by heat stress (i.e., 
increased seawater temperatures; SWTs) and disease is caus
ing a shift from a coral-dominated community [22] to one  
dominated by algae [20, 23–25]. There have been numerous 
studies in the Caribbean on the causes and mechanisms of 
corals bleaching [6, 26], including the probability that some 
corals can “cope” with heat stress better than their symbionts 
[10], which may be related to their evolutionary age and/or 
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their prior experiences/exposures to specific stressors. In 
general, corals in the Florida Keys are relatively younger (5– 
7 K years old; [27]) than those in the Gulf of Mexico (i.e., 
10 K years old; [28]) but have been exposed to a greater 
number of heat waves, pollution, and diseases. Here, we ask 
whether corals in the Florida Keys are better adapted for 
long-term survival of increasing seawater temperatures than 
those in the Gulf of Mexico because of prior exposure to such 
stresses (e.g., bleaching) through time in terms of frequency 
and level. 

The coral reefs of the FGBNMS occur at ∼180 kilometers 
offshore from Galveston, Tex, USA, in clear, pristine waters 
where visibility is ≥30 m ([29]; J. A. Haslun, K. B. Strychar, P.  
W. Sammarco, pers. obs.). Although past monitoring efforts 
indicate a healthy reef environment with little to no bleach
ing, a high degree of bleaching was recorded in the fall 
of 2005 when sustained temperatures above mean monthly 
maximums (MMM) were recorded at the FGBNMS. Bleach
ing in the fall of 2005 was observed in 42–46% of all coral 
on both the East and West banks; this percentage of corals 
affected by bleaching decreased to 4–10% by January (2006), 
with most recovering over that three to four month seasonal 
time period [30]. This paper is believed to be the first of any 
type of massive bleaching experienced by these reefs [31]. 

Bleaching is defined as the whitening in appearance of a 
coral when the endosymbiotic zooxanthellae die or are lost, 
causing the underlying white calcium carbonate skeleton to 
become visible through the transparent coral tissue [32–34], 
particularly after exposure to acute or chronic increases 
in SWTs. Small changes to a reef ecosystem, particularly 
shifts in SWTs by 0.5–1.0◦C above the MMM, can result 
in bleaching [35, 36]. Corals have also exhibited resilience 
following a bleaching event, recovering weeks to months 
later following thermal stress [6, 37]. Jones et al. [38] discuss  
two mechanisms by which this can occur: (1) the colony 
is either able to recover fully from thermal stress, or suffer 
only partial mortality due to the independence of individual 
polyps increasing their feeding rate within a colony; or (2) 
following a bleaching event, the coral is unable to respond to 
the loss of the symbiont resulting in colony mortality. Both 
of these trends have been well documented. For example, 
on the Great Barrier Reef (GBR) of Australia, Acropora spp. 
corals were subjected to uncharacteristically high SWTs, 
causing up to 88% mortality [39]. Oxenford et al. [40], 
however, reported bleaching equivalent to ≥70% of coral 
species, located near Barbados in the southeastern Caribbean 
in 2005. They categorized this as the most severe bleaching 
event recorded in Barbados; however, mortality was minimal 
as many coral recovered. Such corals are hypothesized to 
“reassociate” with better-adapted zooxanthellae. This con
cept has been termed the “Adaptive Bleaching Hypothesis” 
(ABH) [41–43], and its effectiveness is dependent upon both 
the intensity and duration of the stress [6]. 

The symptoms of bleaching have also been traditionally 
broken down into 2 cell phenomena: (1) apoptosis and (2) 
necrosis [44–46], both collectively part of cell death pro
cesses. Apoptosis is a preprogrammed or encoded event that 
is initiated following a stress stimulus and subsequent sig
naling cascade within the cell, including a reduction in cell 

size over time concurrent with the externalization of the 
membrane-bound molecule phosphatidylserine resulting in 
its dismantling without inflammation or the stress signaling 
of other cells [47–50]. Other characteristics of apoptosis 
include symmetrical DNA cleavage patterns (multiple inte
gers of ∼180–200 bp) for apoptosis, versus random pat
terns associated with necrosis. Necrosis, on the other 
hand, is indicative of extreme trauma, with characteristic 
increases in cell size followed by cell rupture and inflam
mation at the site of insult, resulting in cell death [47, 51]. 
Strychar et al. [52] documented these processes to occur not 
only in the zooxanthellae in situ but also in the tissue of host 
corals. Using flow cytometry, Strychar et al. [52] determined 
that the concentration of live zooxanthellar cells in water 
samples obtained from corals subjected to hyperthermal 
stress (34◦C) decreased with time while the concentration 
of apoptotic and necrotic cells increased. Lower experi
mental temperatures did not induce significant apoptosis 
or necrosis. This was an indication that such corals were 
already adapted (or exapted) to higher seawater temperatures 
[10]. 

A third mode of cell death, autophagy [53, 54], has re
cently been observed to participate in cnidarian bleaching. 
Autophagy is a stress-dependent pathway in which identified 
targets including organelles, protein, and foreign intracellu
lar pathogens are removed from the cell through the pro
duction of an autophagosome and digestion from hydrolytic 
enzymes therein ([55], reviewed by [56]). Dunn et al. [53] 
determined that autophagy occurs to some extent along with 
apoptosis during bleaching. Further, Downs et al. [54] re
ported on the autophagy of symbiotic dinoflagellates refer
ring to this particular process as symbiophagy during the 
cnidarian bleaching response. Although these three modes 
of cell death appear to play a role in the bleaching response, 
their mechanisms still remain unclear. 

The objectives of this study are to compare and contrast 
the physiology of zooxanthellae expelled from Montastrae
a cavernosa  collected from two geographically separated 
sites—the FGBNMS and FKNMS. We will attempt to deter
mine whether corals from the FGBNMS are more susceptible 
to thermal stress and exhibit a higher frequency of cell death 
responses (necrosis and apoptosis) than corals from the 
FKNMS, which are frequently reported to experience high 
seawater temperatures and thermal stress. 

2. Methods 

2.1. Target Species. We chose to use the host species Mon
tastraea cavernosa as our experimental coral because it is 
well represented in both the FGBNMS (Texas) and FKNMS 
(Florida) and may be a good bioindicator species for thermal 
stress. The corals M. cavernosa (Linnaeus, 1767) and Mille
pora alcicornis (Linnaeus, 1758) are reported to be the most 
sensitive to thermal stress at the FGBNMS [30, 31]. Most 
other massive and encrusting species present, such as poritids 
and faviids, are much less sensitive [57–59]. Montastraea cav
ernosa is also abundant, easily recognizable, and its taxonomy 
has been well described. 
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2.2. Collection Sites. We sampled from one site within the 
Gulf of Mexico (GOM)—the West Flower Garden Bank (27◦ 

52" 35.1"" N, 93◦ 48" 54.1"" W) National Marine Sanctuary 
(FGBNMS) located in the northwestern GOM, ∼ 190 km SE 
of Galveston, Tex, USA [29]. The FGBNMS is comprised of 
two reefs, the East Bank (27◦ 54" 35.9"" N, 93◦ 35" 49.7"" W) 
and the West Bank, which are 19 km apart and 65.8 km2 and 
77.2 km2 in area, respectively [60]. Seasonal water tempera
tures range from ∼ 20◦ C in mid-February to 30◦ C in August 
[30]. The second site was the Florida Keys National Marine 
Sanctuary (FKNMS) which is ∼ 4,506 km2 and is located at 
the southern tip of Florida where the GOM loop current exits 
into the Caribbean [27]. 

2.3. Coral Collection and Maintenance. Twenty-four frag
ments of Montastraea cavernosa were collected from the West 
Bank of the FGBNMS with the assistance of SCUBA divers. 
Coral fragments ∼ 2.5 cm2 in size were excised from parent 
colonies at 23–25 m depth with a cold chisel and mallet (one 
fragment per colony) and placed in individual 50 mL plastic 
cylindrical bottles prefilled with water derived from the site 
of collection. Bottles were placed in netted collection bags 
and transported to the surface. 

Aboard the vessel, individual coral fragments were re
moved from the bottles and submerged in a stress-relieving 
solution (Kent Marine Tech D parasite and bacterial dip) for 
5 mins to prevent bacterial infection caused by excision from 
the parent colony. Samples were then placed and stored in a 
modified cooler fed with site-derived water pumped contin
uously from a depth of ∼ 1 m using a submersible pump and a 
flow-through system to maintain a suitable environment for 
the coral during transport to Texas A & M University-Corpus 
Christi (TAMUCC). A portable aeration system provided 
oxygen during transport. At TAMUCC, corals were trans
ferred to a 1,703 L quarantine tank consisting of a protein 
skimmer, refugium, UV light, water heater/chiller, and an 
automatic reverse osmosis deionized (RO DI) water-topping 
system for salinity maintenance. Fragments were acclimated 
to tank conditions for a minimum of two weeks prior to 
treatments and allowed to recover following collection. Coral 
color was monitored over this period using the Coral Color 
Reference Card technique developed by Siebeck et al. [61]. 
Specimens of M. cavernosa were used if they expressed the red 
color morph and were comparable to condition C6 of hue 8 
on the reference card, indicating an abundance of symbionts 
equivalent to ∼ 3.0 × 106 zooxanthellae cm2. 

Coral representatives of the FKNMS were obtained with 
assistance from Mote Marine Laboratory Tropical Research 
Station, Key West, Florida. Twenty-four coral fragments 
∼ 2.5 cm2 were collected in and around the Naval Air Station 
(NAS) ship channel from a depth of 11-12 m. The fragments 
were shipped to TAMUCC and placed in a quarantine 
tank similar to the FGBNMS fragments where they were 
monitored over the next two weeks using the Coral Color 
Reference Card [61]. 

Although the collection depths of each coral sample pop
ulation were different, evidence from Lesser et al. [62] indi
cates that M. cavernosa populations lying between 11 and 

30 m are not significantly different with respect to zooxan
thellae population (cells cm− 2), quantum yields, and chloro
phyll concentration (total µg chl cm− 3, total pg chl cm− 3, and  
chl a : c2 ratio) within the depth range of this study. Further, 
the cladal diversity of zooxanthellae within large geographic 
areas with respect to M. cavernosa has been shown to be 
consistently clade C although subtypes are present [63–68]. 
The areas  of  these studies  span  the Gulf  of  Mexico  from  
the Bahamas to the Yucatan peninsula and to Bermuda. We 
also chose to only collect the adult red color morph of M. 
cavernosa in order to minimize the influence in host-derived 
pigments between fragments if present. 

2.4. Experimental Design. We followed a Model I, repeated 
measures, three-way orthogonal experimental design in 
order to determine the thermal stress thresholds of Montas
traea cavernosa from the FKNMS and FGBNMS. The three 
primary factors were water temperature, geographic site, and 
duration of exposure to water temperature. Each experi
mental trial consisted of twelve individual coral fragments 
collected as previously discussed. Four fragments were ran
domly assigned to each of three thermal stress temperatures 
(28, 31, and 35◦ C) for a total of n = 4 replicates.  Fifty
milliliter water samples were collected from each replicate in 
6 h intervals over 72 h in order to quantify and determine 
the physiological condition of expelled zooxanthellae. To 
increase the total number of replicates sampled, each trial 
was repeated twice (ni = 8). 

2.5. Flow-Through Seawater System. Thermal stress experi
ments were carried out in a “Flow-Through Seawater Sys-
tem” (FTSWS). The seawater used for this study was obtained 
from the Upper Laguna Madre, Corpus Christi, Tex, USA and 
delivered by Texas Parks and Wildlife Department (TPWD) 
to our FTSWS wet lab located at TAMUCC (Figure 1). 
All seawater was filtered through a 20 µm filter  by  TPWD  
prior to delivery. We then pumped the seawater through a 
5 µm filter into five 189 L fiberglass cylindrical storage tanks 
(Figure 1). Practical salinity was maintained at 34 by the 
addition of deionized water when necessary. In this study, 
we are using practical salinity which is a dimensionless 
unit as recommended by the International Association for 
the Physical Sciences of the Oceans [59] and  adopted  by  
the International System of Units (SI) in 1985. A closed 
recirculation system consisting of a sand filter coupled with 
a UV filter (Figure 1) served as a tertiary filtration system 
for the experimental water, which was run for ≥ 2 days prior  
to any experimentation. Oxygen was delivered continuously 
via a Thomas 5030A electrical air pump, common to each of 
the five diffuser lines feeding the five cylindrical water tanks 
(Figure 1); oxygen levels were maintained at ∼ 5-6 mg L− 1. 

Seawater was gravity-fed from the five storage tanks into 
two manifolds. Each manifold fed six 19 mm hose barbs 
with Nalgene tubing. Each of these was attached to one of 
two 6-channel peristaltic pumps (PP; Figure 1). The PP con
trolled the rate of seawater entering each of the twelve 1 L 
incubation chambers (IC), delivering a constant flow rate 
of 12.5 mL min− 1± 0.3 mL to each IC (Figure 2). To help 
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Tank 6 Tank 5 Tank 4 Tank 3 Tank 2 Tank 1 
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IC/WJ 10 IC/WJ 11 IC/WJ 12 
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Drain 
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filter 

Canister 
filter 

Water 
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Figure 1: Flow-through seawater system consisting of sand and UV light filtration. Water was pumped into five of the six storage tanks 
through the filter system by a 1.5 hp centrifugal Jacuzzi pump (pump and filter system used only prior to experimentation to prevent pump 
cavitation). Incoming water enters the pump, passes through the sand filter and a 5 µm Canister filter coupled with UV-light sanitization, 
and is then passed to the storage tanks. During experimental trials, water is pumped to the twelve incubation chambers (IC), exiting via a 
drain. 

WJ 

IC 

From pp 

Out 

Inside IC 

Coral 

Stir bar 
Stand 

To drain line 

Stir/hot plate 

In 

Figure 2: Schematic representation of a single incubation chamber (IC) and water jacket (WJ). Upper arrows represent the direction of 
water flow. Arrows encircling the IC represent tubing bathed within the WJ. Inset: magnified view of contents within an IC. 

maintain IC seawater temperatures, each IC was housed in 
a 17.9 L water jacket (WJ), and each of these contained a 
75 W Jager aquarium heater. In addition, 3 m of Nalgene 
tubing wrapped around the peripheral of the IC also helped 
maintain constant temperatures (Figure 2). From each PP, 
water was pumped through this tubing, subsequently enter
ing each IC at one of three temperatures: 27◦C (control), 
31◦C, or 35◦C. Each IC contained a coral fragment, which 

rested on a stand below which a single stir bar was placed 
(Figure 2). Each WJ was placed on top of a stir plate turned 
on at ∼300 rpm in order to maintain a thermally well-mixed 
water column. Excurrent tubing from each IC was attached 
to a single drain line common to all chambers (Figure 1). 

Environmental parameters were monitored every 12 h 
including flow rate (mL min−1), practical salinity, tempera
ture (◦C), and photosynthetically active radiation (PAR in 
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µE m2 s−1); photographs were also taken of coral fragments 
throughout each trial. 

2.6. Sampling of Expelled Zooxanthellae. Sampling methods 
were adapted from Strychar et al. [44, 46]. Seawater samples 
(50 mL) were obtained every 6 h for 72 h using plastic 
syringes, one for each individual IC. Seawater samples were 
deposited into separate 50 mL Falcon conical centrifuge 
tubes and centrifuged at a relative centrifugal field of 700× g 
for 5 min in a Beckman Coulter Allegra 25R centrifuge. The 
supernatant was decanted leaving 5 mL remaining in the 
sample tube, and 2 mL of the suspended solution was equally 
separated into two 1.5 mL microcentrifuge tubes prior to 
centrifuging again at 700× g for 5 min in an Eppendorf 
Centrifuge 5415D. One group of aliquots (12 tubes) was used 
to determine the number of live, dead, and mitotic cells using 
light microcopy and a hemocytometer while a second group 
of twelve aliquots was used to assess cell viability using flow 
cytometry (FCM). 

2.7. Light Microscopy and Hemocytometry. The supernatant 
from each tube of the first set of twelve aliquots was 
discarded, leaving 200 µL in each tube without disturbing 
the pelleted cells. The cells were stained with trypan blue 
(0.2%, BDH Chemicals) in phosphate-buffered saline (PBS; 
1 : 1) and gently vortexed for 5 sec before incubating at room 
temperature for 5 min. Two 10 µL subsamples were then  
loaded into each side of a Neubauer-improved hemocy
tometer (Marienfeld), which were then visualized using a 
XDY-1 inverted microscope at 100× magnification. Light 
microscopy helped to determine zooxanthellar density and 
cell viability. Cells were considered viable if their membranes 
were intact and the DNA-binding Trypan blue was excluded 
from the cell. Cells were considered mitotic if “doublets” were 
observed. Necrotic cells appeared blue and exhibited either 
the basic shape of live cells or the expulsion of their contents. 
Concentrations of cell types were determined using the 
following equation (traditional hemocytometer calculations, 
Hausser Scientific Co.): 

(( )
Zooxanthellae total/2 replicates /5.0 mm2

)× 1000 = 
mL 50 mL 

15 samples × 
IC 

. 

(1) 

2.8. Flow Cytometry (FCM). The second set of aliquots con
sisting of twelve microcentrifuge tubes used for FCM were 
prepared using 100 µL of 1  × Annexin-binding buffer (ABB) 
added to each microcentrifuge tube following the recom
mendations of the manufacturer. This step was followed 
by the addition of 1 µL propidium iodide (PI; 100 µg mL−1; 
Invitrogen) and 3 µL of Annexin V-fluor 488 nm conjugate 
(Invitrogen). The 12 microcentrifuge tubes were then incu
bated at room temperature in the dark for 30 min. Following 
incubation, an additional 400 µL of ABB was added to 
each microcentrifuge tube and the contents gently vortexed 
for 1 min. After vortexing, the solution was transferred by 

pipette to a 5 mL BD Falcon round-bottom tube (one tube 
per microcentrifuge tube) for analysis via FCM. 

A FACSVantage SE flow cytometer (Becton Dickinson) 
equipped with a 488 nm laser was used to identify and quan
tify viable, necrotic, apoptotic, and postapoptotic zooxan
thellar cells in each sample. A fluorescein isothiocyanate 
(FITC) 530/30 band-pass FL-1 filter detected green fluo
rescence whilst a LSRI Red 630/22 band-pass FL-3 filter 
was used to detect red fluorescence, in order to differen
tiate between each of the four cell death categories. On a 
scatter-plot of FL-1 versus FL-3 cells displaying increased 
phosphatidylserine exposure and thus apoptosis, such cells 
would be stained with the fluorescent green Annexin V
fluor and thus, display an increase in the FL-1 parameter. 
Cells displaying necrotic characteristics would be stained 
red by the membrane-impermeable dye PI and green as all 
phosphatidylserine will be stained by Annexin V-flour. This  
results in live cells predictably in the lower left quadrant (no 
stains), apoptotic cells in the lower right quadrant (green 
fluorescence only), and dead cells in the upper right quadrant 
(red and green fluorescence). All data were visualized and 
plotted using the manufacturers CwllQuest-Pro software. 

2.9. Statistical Analyses. Refer to section 2.4 for statistical 
model parameters. Coral fragments were chosen and as
signed to treatments randomly. Data were analyzed using 
SPSS V17 and the general linear model (GLM) repeated
measures, analysis of variance (ANOVA). Hemocytometry 
and FC data were not compared directly due to differences 
in data format (percent versus count). 

All data were tested for significant variation due to sphe
ricity using the Greenhouse-Guyser correction (Sphericity < 
0.75) or the Huynh-Feldt correction (Sphericity > 0.75; Field, 
2009). Since the data lacked sphericity, Tukey’s and Games-
Hollow post hoc tests were applied after analysis via GLM 
repeated-measure ANOVAs to examine specific significant 
differences between various means. Data displaying signif
icant variations over time (h) were Bonferroni corrected. 
Higher-order interactions will only be mentioned and dis
cussed if significant. 

3. Results 

The environmental variables that were monitored, including 
temperature and PAR, were stable over the 72 h time period. 

3.1. Hemocytometry: Flower Garden Banks National Marine 
Sanctuary (FGBNMS). The number of viable zooxanthellae 
expelled from the coral per unit time was initially very high 
and then decreased through time. When stressed at 35◦C 
(maximum temperature treatment), a maximum of 2,750 
cells mL−1 were expelled at 36 h; this dropped to 1,250 
cells mL−1 at 66 h. At the lower temperatures, loss of cells 
from the holobionts was <1,000 cells mL−1during any given 
time period (Figure 3(a1)). Necrotic zooxanthellar cells 
expelled from corals exposed to 35◦C followed an increasing 
then decreasing trend, starting at 400 cells mL−1 at 6 h, 
increasing to 1,050 cells mL−1 at 42 h, and then falling to 
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Figure 3: Hemocytometry data showing the mean temporal loss of viable (a1, b1), necrotic (a2, b2), and mitotic (a3, b3) zooxanthellae 
cells (×103 mL−1) expelled from Montastraea cavernosa collected from the Flower Garden Banks National Marine Sanctuary (a1–3)) and the 
Florida Keys National Marine Sanctuary (b1–3)) sampled every 6 h over a 72 h time period at 27◦C (e), 31◦C (.), and 35◦C (•). Error bars 
represent 95% confidence intervals (ni = 8); some error bars are too small to be seen. 

550 cells mL−1 at 66 h (Figure 3(a2)). There were no signifi
cant differences in the concentrations of mitotic symbiont 
cells expelled between any of the temperature treatments 
(Figure 3(a3)). 

In terms of cumulative loss, both viable (Figure 4(a1)) 
and necrotic (Figure 4(a2)) expelled zooxanthellae were sig
nificantly greater in the 35◦C treatment than in the 27◦C 

control and 31◦C treatments (ANOVA; P < 0.005). The 
concentration of mitotic cells lost, however, did not vary 
significantly (Figure 4(a3)). Concentrations of live zooxan
thellae were consistent across temperatures and time, with 
the exception of t = 30, 36, and 66 h (Figure 4(a1): P <  
0.05, Games-Hollow post hoc test). Significant differen
ces in necrotic zooxanthellae concentrations were observed 
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Figure 4: Hemocytometry data showing the mean cumulative loss of viable (a1, b1), necrotic (a2, b2), and mitotic (a3, b3) zooxanthellae 
cells (×103 mL−1) expelled from Montastraea cavernosa collected from the Flower Garden Banks National Marine Sanctuary (a1–3)) and the 
Florida Keys National Marine Sanctuary (b1–3)) sampled every 6 h over a 72 h time period at 27◦C (e), 31◦C (.), and 35◦C (•). Error bars 
represent 95% confidence intervals (ni = 8); some error bars are too small to be seen. Note how cumulative graphs illustrate the effect of 
temperature on overall depletion of a coral’s Symbiodinium complement over 72 h. 

between the control and maximum temperature treatment at 
t = 18, 36, 42, 48, and 54 h (P <  0.05; Figures 3(a2) 
and 4(a2)). Total cumulative concentrations of viable, dead, 
and mitotic zooxanthellae at 27◦C (control) and 31◦C 
(Figure 4(a1-2)) did not vary significantly through time. 

3.2. Hemocytometry: Florida Keys National Marine Sanctuary 
(FKNMS). Concentrations of expelled viable zooxanthellar 
cells varied significantly between all temperature treatments 

(ANOVA, P < 0.01; Figure 3(b1)). Corals incubated at 35◦C 
experienced a greater loss of symbiont cells than at 27◦C 
and 31◦C (ANOVA; P < 0.05; Figure 3(b1)). Concentrations 
of viable zooxanthellae did not vary with temperature 
when exposed for ≤30 h (P >  0.05, GLM ANOVA). After 
30 h at 35◦C, concentrations of viable cells lost from the 
coral at first decreased to ∼600 cells mL−1 at 18 h, increased 
to 2,750 cells mL−1 at 66 h, and then decreased again to 
∼1,300 cells mL−1 at 72 h (Figure 3(b1)). Concentrations of 
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Figure 5: Flow cytometry data showing the mean temporal loss expressed as a percent (%) of viable (a1, b1), necrotic (a2, b2), apoptotic (a3, 
b3), and postapoptotic (a4, b4) Symbiodinium cells expelled from Montastraea cavernosa collected from the Flower Garden Banks National 
Marine Sanctuary (a1–3)) and the Florida Keys National Marine Sanctuary (b1–3)) sampled every 6 h over a 72 h time period at 27◦C (e), 
31◦C (.), and 35◦C (•). Error bars represent 95% confidence intervals (ni = 8); some error bars are too small to be seen. 
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Figure 6: Temperature data spanning 2005–2008 from the West 
bank of the Flower Garden Banks National Marine Sanctuary (FGB
NMS) and the Florida Keys National Marine Sanctuary (FKNMS). 
All measurements were taken with submerged YSI devices. The 
FGBNMS and FKNMS data set gaps were due to YSI maintenance 
and hurricane damage. 

necrotic zooxanthellae released varied significantly between 
temperatures (P < 0.01) as well as time (P < 0.05, ANOVA). 
Concentrations of mitotic cells lost did not vary significantly 
between temperatures or through time (Figure 3(b3)). 

In terms of cumulative loss, only viable (Figure 4(b1)) ex
pelled symbiont cells show a significant overall loss through 
time (P <  0.01, ANOVA). This pattern was consistent 
throughout the experiment (P < 0.05, Games-Hollow post 
hoc test). 

3.3. Flow Cytometry: Flower Garden Banks National Marine 
Sanctuary (FGBNMS). Flow cytometry revealed that zoox
anthellar loss from FGB corals was significant through 
time (ANOVA, P <  0.01) and varied significantly across 
experimental temperatures (ANOVA, P < 0.01). The percent 
of viable zooxanthellae lost from the holobionts increased 
through time in all temperature treatments (Figure 5(a1)). 
Specifically, the mean percentage of viable expelled cells 
observed at 35◦C was significantly lower than those at 
27◦C and  31◦C (P <  0.05, Games-Hollow post hoc tests; 
Figure 5(a1)), with no significant differences between the lat
ter two treatment effects (P > 0.05). The percentage of ne
crotic cells detected varied significantly between experi
mental temperatures (P < 0.01, ANOVA) as well as through 
time (P <  0.01). The mean percentage of necrotic cells 
expelled was the greatest at 35◦C (P < 0.01, Games-Hollow 
post hoc test; Figure 5(a2)) with the greatest loss occurring 
within 24 h. There was a general decline in necrotic cells 

over time ( p < 0.01, ANOVA; Figure 5(a2)), although no 
significant differences occurred between the control and 
31◦C treatments. There was no significant variation between 
temperatures or through time in apoptotic (P >  0.05, 
Figure 5(a3)) and post apoptotic (P > 0.05, Figure 5(a4)) 
cells. 

3.4. Flow Cytometry: Key West National Marine Sanctuary 
(FKNMS). Percent viable zooxanthellae did not vary signif
icantly between temperature treatments (P > 0.05, ANOVA) 
or through time (P > 0.05, Figure 5(b1)). Necrotic cells were 
lost at significantly different rates between temperatures (P <  
0.01, ANOVA) and times (P < 0.01, Figure 5(b2)). A higher 
number of necrotic zooxanthellae were expelled from coral at 
35◦C than at 27◦C or 31◦C, at 30, 60, and 66 h time intervals 
(P <  0.01). The percentage of apoptotic cells expelled 
did not vary significantly between temperatures; variation 
was detected, however, with time (P < 0.01, Figure 5(b3)). 
A difference in the incidence of postapoptotic cells was 
also evident through time (P <  0.01, Figure 5(b4)) but 
not between temperatures (P >  0.05). In general, the 
data followed a bimodal distribution through time for each 
temperature with two local maxima at ∼25%, between 12 h 
and 18 h and another between 54 h and 72 h (Figure 5(b4)). 
Minima of ∼10, 15, and 11% were recorded between 36 h 
and 48 h time intervals at 27◦C, 31◦C, and 35◦C, respectively, 
(Figure 5(b4)). 

4. Discussion 

The rate at which corals can adapt to increases in seawater 
temperature is of great concern worldwide. Mean global 
SWTs have increased by ∼0.5◦C over the past century and 
are expected to continue to rise over the next  several decades  
[69]. The deteriorating physiological state of expelled zoox
anthellae is indicative of specific bleaching responses in 
a wide array of corals including both alcyonacean and 
scleractinian corals [45, 47]. We speculate that the observed 
differences we found in Montastraea cavernosa between the 
Flower garden banks and the Florida keys populations may 
be attributed to adaptation/exaptation [10] or  symbiont  
subtype shuffling. That is, the adaptation may be associated 
with intermittent ∼1 month-long increases in SWTs over the 
last few decades in corals in the Florida keys compared to that 
of the Flower garden banks (Figure 6). 

The fact that increased concentrations of viable zooxan
thellae were expelled by M. cavernosa fragments from the 
FGBNMS as opposed to those from the FKNMS at higher 
experimental temperatures implies that (1) symbionts in 
corals inhabiting the FGBNMS may be more heat-sensitive 
than those inhabiting the FKNMS; (2) symbionts in corals 
from FKNMS may have become better adapted or acclima
tized to increased seawater temperatures; (3) clade C sym
bionts with large temperature sensitivities are shuffled in M. 
cavernosa, or (4) the host itself has become better adapted to 
increased prevalence of heat stress in the FKNMS. Generally, 
bleaching occurs in corals exposed to temperatures ≥1◦C 
above the MMM in a given marine environment for a period 
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of time on the order of days or weeks, defined as “Degree 
Heating Weeks” [35, 36]. Goreau and Hayes [35] coined  
the term “Degree Heating Weeks” by developing a modeling 
program referred to as “Hotspot” in combination with a 
satellite thermal detection system to detect bleaching events. 
A “hotspot” was deemed a region where the sea surface tem
perature (SST: defined as the upper 1 m of ocean) exceeded 
the annual MMM climatological value by 1.0◦C for  an  
observed number of weeks. The fact that zooxanthellate 
coral from the FKNMS tolerated ∼2 months  of  increased  
temperature (E. Bartels, pers. com.), reaching or surpassing 
the bleaching criteria suggested by Goreau and Hayes [35] 
in 2005 and 2007, suggests that FKNMS zooxanthellae 
corals appear better adapted or acclimatized to heat stress. 
Conversely, very few subsurface temperatures >30◦C were  
recorded at the FGBNMS over a 3-year period during the 
three warmest months (August–October; J. DeBose, pers. 
comm.). Temperature rarely exceeds MMM temperatures 
although isolated mass bleaching events have been observed 
[30]. 

The increased frequency of longer-term (∼2 months)  
low-intensity heat stress may have allowed the Florida keys 
M. cavernosa zooxanthellar population to become better 
adapted to these environmental changes. Middlebrook et al. 
[70] discussed the role of specific patterns of temperature 
change over time in a given region and its influence on 
temperature adaptation in populations. They noted that 
the zooxanthellate Acropora sp. (harboring solely clade C3) 
pre-stressed at 31◦C for  ≤2 weeks prior to a hyperthermic 
treatment could resist hyperthermic stress for at least 5 
days (34◦C); coral not receiving such pretreatment exposure 
experienced a large decrease in symbiont density. This 
significant change was attributed to adaptations within the 
host alone and not the zooxanthellae population, specifically 
photoprotective mechanisms. Our data support the conclu
sions of Middlebrook et al. [70]. Seawater temperatures that 
frequently exceed the MMM slightly over a period of ≤2 y in  
the Florida keys (E. Bartels, pers. com.) may have driven the 
coral host to become better adapted to heat stress. Although 
we cannot conclusively determine that clade C subtypes 
between sites had no effect on bleaching susceptibility and 
the expulsion of live, dead, or apoptotic zooxanthellae, 
authors from the published literature as previously discussed 
in section 2.3 suggest that the depths at which fragments were 
collected for this study, species utilized, and the condition 
of fragments at the point of collection [68, 71] allow for 
some interpretation with respect to the genetic diversity of 
clades within fragments between sites. Future studies should 
consider incorporating genetic studies to help determine if 
symbiont clade subtypes exist and whether those subtypes 
contribute to a host’s ability to withstand episodes of 
bleaching. Hence, it is highly possible that symbiont clade 
subtype shuffling may affect bleaching susceptibility. Lesser 
et al. [62] noted that unique subtypes in M. cavernosa were 
described at depth (>30 m), and these, therefore, may play an 
important role in the holobiont survivorship. Further, many 
coral species have been found to be host-specific subtypes 
especially in high temperature stressed areas. Oliver and 
Palumbi [72] report that the  corals  Pocillopora damicornis 

and Acropora pulchra display distinct clade shuffling with 
respect to the frequency of high-temperature events. Clade 
C subtype C1 occurred in cooler pool inhabiting corals 
while Clade D was found in those coral inhabiting hotter 
pools. Although this dramatic difference in temperature 
was not the case with our particular sites, continued low 
degree temperature stress could impart a similar result. We, 
therefore, hypothesize that adaptation may be occurring in 
M. cavernosa at the FKNMS. 

Low concentrations of apoptotic zooxanthellae cells were 
also detected in all temperature treatments from both exper
imental sites. The frequency of apoptosis in symbiont cells 
lost at all temperatures suggest that either the incubation 
at 31◦C was not a significant stress, the length of time at 
each temperature treatment was too short, or the incubation 
at 35◦C was too intense to allow the development of an 
apoptotic response, resulting in a larger concentration of 
necrotic zooxanthellar cells. By comparison, Strychar et al. 
[44] observed increased apoptotic zooxanthellae from 0 to 
∼30% in the Indo-Pacific coral Acropora hyacinthus when 
temperatures at 28◦C and  at  32◦C were compared. They 
showed that zooxanthellate corals that were less susceptible 
to heat stress expelled higher concentrations of apoptotic 
zooxanthellae ranging from 0–10% under intense heat 
stress (34◦C), with necrosis being more prominent (≤20%). 
Strychar and Sammarco [73, 74] and Sammarco and Strychar 
[10] have also shown that some host corals in the Indo-
Pacific, specifically Acropora hyacinthus, Porites solida, and  
Favites complanata have a much broader temperature toler
ance (i.e., 34–36◦C) than their endosymbiotic zooxanthellae 
(30–32◦C), exhibiting adaptation (or exaptation) towards 
increased SWTs. Fitt et al. [75] observed similar results 
in the Indo-Pacific corals Porites cylindrica and Stylophora 
pistillata, and reviews by Baird et al. [76], who comparatively 
assessed the role of coral hosts versus zooxanthellae in 
a wide variety of corals worldwide, support the concepts 
of Strychar and Sammarco [73, 74] and Sammarco and 
Strychar [10]—such that exaptation to heat stress by coral 
hosts may result from numerous prior exposures to varying 
climates. 

The growth of Symbiodinium by mitosis in situ under 
bleaching conditions provides information regarding wheth
er a host coral will survive, maintain its standing stock of 
zooxanthellae, or become reinfected by an alternate zoox
anthellar clade. The standing stock density of zooxanthellae 
is regulated by symbiont reproduction in hospite as well as 
by the degradation and removal of zooxanthellae through 
the gastrodermal cavity and tentacles of the host [77–79]. 
Here, the expulsion of mitotic zooxanthellae was relatively 
constant in experimental corals from the FGBNMS and 
FKNMS. Strychar et al. [45], however, noted that expelled 
zooxanthellae exhibited higher growth rates at 34◦C versus  
lower experimental temperatures. The low abundance of 
mitotic zooxanthellae we observed in M. cavernosa may 
indicate a preference toward host autotrophy (i.e., ingesting 
the zooxanthellae) versus increased host heterotrophy via 
polyps increasing their feeding rate. Increased heterotrophy 
is known to occur in some cnidarians when under stress (84, 
85, Goreau, pers. com.). 
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Interestingly, we note that the homeostatic control of 
zooxanthellae, although not monitored extensively (zooxan
thellae were not continuously collected) in this study, was 
observed. It should, therefore, be concluded that simple 
alterations to the methods used for such studies including 
the continual collection of zooxanthellae over a given period 
of time be employed in order to understand the control of 
endosymbiont concentration within a host coral. Informa
tion regarding the homeostatic control of endosymbionts 
with respect to sensitive and hearty coral species may provide 
further insight into the importance of host endosymbiont 
interactions as well as a means to determine the role of 
specific proteins on host control of zooxanthellae density. 

5. Conclusion: Adaptation in Montastraea 
cavernosa to Heat Stress 

Plant/animal symbioses require cooperative communication 
between the host and symbiont (i.e., cell signaling) in order 
to remain effective [80]. It is important to again note that the 
diversity and concentration of zooxanthellae within colonies 
of M. cavernosa has been shown to be consistently clade C 
and between 2.3–4.2 × 106 cells cm−2 [62–68]. Further this 
study utilized only the red color morph of M. cavernosa, and,  
therefore, the pigments associated with the host were similar 
for all fragments. Isolating the degree and duration of heat 
stress, we hypothesize that during heat stress, the sensitive 
connection that evolved over many millennia between the 
coral zooxanthellar symbioses is potentially caused by the 
disruption of the Calvin Cycle [42, 81]. Due to the large 
percentage of carbon supplied to the host by algal photosyn
thesis in hospite, the symbiosis has evolved mechanisms to 
reduce the impacts of harmful byproducts (e.g., radical oxy
gen species—ROS), most likely through fluorescent proteins 
[26]. In organisms not repeatedly exposed to such stressors, 
mechanisms to cope with increased stimulation of apoptosis 
and any associated byproducts may not be well developed 
and subsequently may cause particular species to show 
increased symptoms of bleaching. Those species that show 
increased sensitivity to bleaching, for example, FGBNMS 
coral as opposed to FKNMS coral, may require increased 
frequency of exposure to mild heat stress (i.e., acclimation) 
and/or an increased period of time over which seawater tem
perature increase (i.e., adaptation) to become less sensitive. 

To our knowledge, this is the first study that has experi
mentally examined the effects of heat stress on Montastraea 
cavernosa in the Caribbean (i.e., FKNMS) versus the Gulf of 
Mexico (i.e., FGBNMS). Further, we believe these sites to 
be a unique opportunity to determine the response of coral 
to bleaching particularly with respect to the degree that 
host adaptation/exaptation as well as symbiont shuffling may 
interact to resist thermal stress. In situ bleaching observations 
by Precht et al. [30] indicate that 4–10% of all corals are suf
fering effects of increased thermal stress at the FGBNMS. 
Our data indicate a potential source for the variation in 
this susceptibility to heat stress and bleaching, which we 
propose as regional adaptation most likely based on range 
and variation of temperatures not normally experienced. 
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